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SUMMARY 
In this study, the discretized finite volume form of the two-dimensional, incompressible Navier-Stokes 
equations is solved using both a frozen coefficient and a full Newton non-linear iteration. The optimal 
method is a combination of these two techniques. The linearized equations are solved using a conjugate- 
gradient-like method (CGSTAB). Various types of preconditioning are developed. Completely general 
sparse matrix methods are used. Investigations are carried out to determine the effect of finite volume cell 
anisotropy on the preconditioner. Numerical results are given for several test problems. 
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1. INTRODUCTION 

Finite volume or finite element discretizations of primitive variable formulations of the in- 
compressible Navier-Stokes equations result in a large system of non-linear algebraic equations. 
These algebraic equations can be solved in a sequential, decoupled manner (as for example in 
the SIMPLE algorithm') or more fully coupled methods may be ~ s e d . ~ - ~  

There are two main approaches for fully coupled solution methods. One popular technique 
is to simply use full Newton i t e r a t i ~ n . ~ ' ~ * ' - ~  Ne wton iteration has the advantage that con- 
vergence is quadratic provided an initial guess is close enough to the solution. Consequently, it 
is usually possible to  obtain solutions of the discrete equations which have a very small non-linear 
residual, at the expense of a relatively small number of non-linear  iteration^.^." On the other 
hand, it is often the case that arbitrary initial solution estimates may cause the Newton iteration 
to diverge. In practice, this problem is avoided by using pseudo-time stepping3s6 or continuation 
in the Reynolds n ~ m b e r . ~  Frequently, direct methods are used to solve full Newton Jacobians,' ' 
but these are very expensive for three-dimensional problems. Iterative methods have recently 
been used for solution of full Newton Ja~obians,~. '  but care must be taken with the ordering 
of the  unknown^^.'^ and the type of preconditioning used.I3 

Another fully coupled solution method is based on 'frozen coefficient' iteration. In this 
approach, non-linear terms are linearized by 'freezing' some of the unknowns at old iteration 
values. For example, if u: is the value of the discrete velocity at node i, non-linear iteration k, 
then a term in the discrete equations such as 

V i + 1 / 2 " i  

would be linearized as 

u:, 1,2 u: + 1. 
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This frozen coefficient matrix is usually more diagonally dominant than the Jacobian matrix 
and hence easier to solve with an iterative method. Direct  method^'^,'^ have been used to solve 
the frozen coefficient matrix. Multigrid methods typically iterate on a variation of the frozen 
coefficient matrix.16-19 Frozen coefficient non-linear iteration also appears to be a very stable 
method and convergence can often be obtained with initial solution estimates that would cause 
Newton iteration to diverge.l4 A disadvantage of frozen coefficient iteration is that convergence 
of the non-linear iteration can be very slow if a small non-linear residual is required. 

Note that both of these non-linear methods (frozen coefficient and full Newton) require few, 
if any, iteration parameters. This is a distinct advantage over the more decoupled methods. 

The objective of this paper is to compare both of these fully coupled non-linear iteration 
methods while using an iterative method to solve the resulting large sparse matrices. In fact, it 
will be demonstrated that the best method uses a combination of frozen coefficient and full 
Newton iteration in order to utilize the best features of both techniques. Note that some 
comparisons of full Newton and frozen coefficient non-linear iteration were carried out in 
Reference 14; however, a direct method was used for the full Newton iteration. 

In this work the matrices are solved using a preconditioned conjugate gradient (PCG) method 
with CGSTAB2'*'l acceleration. An imcomplete LU (ILU) type of preconditioning is used.22 
Poor results can be obtained with ILU preconditioning unless careful attention is paid to the 
ordering of the unknowns in the m a t r i ~ ~ , ~ ~ p ~ ~ - ~ ~  and even to the discretization used in the 
preconditioning r n a t r i ~ , ~  which may be different in general from the discretization used in the 
actual Jacobian. Another level of sophistication is introduced in this paper by noting that an 
ILU factorization of the frozen coefficient matrix may be used to precondition the Jacobian. 
Completely general sparse matrix methods are used and no special properties of the discretization 
are required. Consequently, we believe that these same methods can be used with little or no 
modification for finite element or finite volume discretizations on unstructured meshes. 

The most efficient methods developed in this work have very few parameters (i.e. no 
underrelaxation is used), which is convenient for non-expert users of software. 

As model problems we consider the primitive variable formulation of the incompressible 
Navier-Stokes equations on a variety of two-dimensional regions. A standard finite volume 
discretization on a staggered grid is used. Results will be reported in terms of the total CPU 
time for solution of the non-linear algebraic equations for a specified convergence tolerance. 
Total times will include matrix construction, (incomplete) factor and solve. 

Comparisons will be made using full Newton iterations with pseudo-time stepping, frozen 
coefficient iteration and a combination of frozen coefficient iteration and full Newton iteration. 
Various preconditioning techniques and ordering methods for solution of the linear equations 
will also be tested and compared with direct solution methods. The effect of cell aspect ratio on 
the performance of the iterative methods will also be demonstrated. 

For the convenience of the reader a nomenclature is provided in the Appendix. 

2. THE GOVERNING EQUATIONS AND THEIR DISCRETIZATION 

The equations governing two-dimensional incompressible fluid flow are those for the conserva- 
tion of momentum (the Navier-Stokes equations), 

au a a ap  1 a Z u  a2u 
- + - ( u u ) + - ( v u ) + - - -  -+- = o ,  
at ax aY ax Re (8x2 a,.) 

ay  a p  Re ax 3 av a a 
- + - ( u u ) + - ( u u ) + - - -  3+2 =o, 
at ax aY 
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and the conservation of mass, 

au a v  
ax ay - + - - 0 .  

23 1 

(3) 

Here u and u are the velocities in the x- and y-directions respectively and p is the pressure. 
Equations (1)-(3) are in dimensionless form with a single parameter, the Reynolds number Re. 
If the terms &/at and av/at are dropped from equations (1) and (2) respectively, we are 
left with the elliptic (steady state) flow equations. 

2.1. Discretization and weighting techniques 

Equations (1H3) are discretized using a finite volume approach over a staggered grid as 
described fully in Reference 1. The region is divided into rectangular cells, with the pressure 
unknowns placed at the centres of the cells and the velocity unknowns at the faces. The mass 
conversion equation (the M-equation) is integrated over each cell (Figure l(a)) of dimensions 
Ax x Ay to give 

(ui+ 1. j - ui, j)AY + (ui,  j+  1 - Vi. j& = 0. (4) 

Equations (1) and (2) (the U -  and V-equations respectively) are integrated over 'staggered' cells 
which have u and u at their centres (Figures l(b) and l(c)). Using the notation of Reference 1, 
the two equations can be written more generally as 

a4 a p x  a p y  
- + ~ + ~ = s, 
at ax ay 

where 

The terms FX and Fy represent the fluxes per unit volume in the x- and y-directions respectively. 
The variable 4 represents u or v,  while S represents the source term (in this case the pressure 
differential). Integrating ( 5 )  over a cell of dimensions Ax x Ay with 4 at the centre gives 

(a) 

Figure 
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The terms Fi+l/2,j and Fi-l/z,j represent the values of %x at the left and right cell interfaces 
respectively, while %i, 112 and Fi, j-  1/2 represent the values of Fy at the top and bottom cell 
interface respectively. Note that the equations are fully implicit; all variables except the Q,Tvj of 
the time derivative term are solved at the new time (thus Q,i,j  = Q,:,;'). 

Finally we must discretize the flux terms at the cell faces. Taking for example the Fx-term at 
the interface between cells centred at Q,i, and Q,i+ j r  we may write Fit l,z, as 

0 if uaVg b 0, U i , j  + U i + l . j  

2 '  Uavg = -Re ,  ifu,,, < 0, 

where h is the distance between the two grid points, uavg is the average x-direction velocity 
through the interface between the cells and Re, = Re u,,, h is the cell Reynolds number. In 
concert with W, d can be chosen to implement a number of weighting strategies. It is not the 
objective of this paper to examine the various possibilities nor to consider the effects of weighting 
methods on the final solution. Most of the tests reported in this paper will be carried out using 
thepower-law weighting method described in Reference 1. This is a popular method and is easily 
implemented by setting 

d = max [ O ,  (1 - 0.1 IRe,()5]. (10) 

Central weighting will be used for one test case. 

3. SOLUTION STRATEGY COMPONENTS 

With the equations discretized, we are left with a large non-linear system that must be solved. 
We have chosen to solve the system in its fully coupled form. Decoupling one set of equations, 
such as is done with the conservation-of-mass equations in the SIMPLE family of algorithms, 
may require more non-linear iterations as compared with the simultaneously solved set of 
 equation^.^ Although the work per non-linear iteration is less for SIMPLE-type methods 
compared with fully coupled approaches, the experimentally determined computational complex- 
ity of SIMPLE appears to be 0(N2),' which compares with O(N3l2)  of the fully coupled methods 
used in this work (where N is the number of cells in the discretization). 

Both the full Newton (FN) and frozen coefficient (FC) non-linear methods iterate according 
to the equation 

Ak(xk+l - xk) = -rk (11) 

where Ak is the linearized equation matrix (LEM) formed from values determined in the 
kth non-linear iteration, x k + l  represents a vector of variables u, u and p from iterations k and 
k + 1, and # represents the non-linear residual vector formed by evaluating the u- and 
u-momentum equations and the conservation-of-mass equation at the kth non-linear iteration. 
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For FN iteration the matrix Ak is the full Jacobian. In the case of FC iteration some derivatives 
in Ak are ignored. 

An important point to note is that the FN and FC methods differ only in the construction 
of the LEM. The evaluation of the residual is the same for the two methods and hence both 
methods can be used to solve the same problem. Both methods, when they converge (i.e. when 
the residual approaches zero), arrive at the same answer to a particular problem, although they 
may approach that answer differently. 

3.1. Full Newton iteration 

Full Newton iteration is performed by constructing the LEM with all the unknowns u, v and 
p of the discretized equations evaluated at  the current iteration point. To illustrate this, consider 
equation (9) for the U-equation and its partial derivative with respect to uk. The Re,-term is 
fully expanded, and when 0 < Re, < 10, 

Thus 

- Uk 1.1 . - Uk c + l . j  -(1- Re h(u:, + u:+ 1. j )  

4 20 (13) 

The full expansion of the U- and I/-equations is similar and hence will not be given here. 
The M-equation is of course linear in the momenta. 

3.2. Frozen coeficient iteration 

Frozen coefficient iteration uses a simplified form of the LEM. The M-equation is expanded 
as in the full Newton matrix. In the U -  and V-equations we replace uqvg with u:,.~ = ufVg. This 
term is not expanded when constructing the partial derivatives but is ‘frozen’ as a value for the 
coefficients and nothing more. Consider equation (9) for the U-equation again and its partial 
derivative with respect to uk, with the same conditions as specified for equation (12): 

Re hufVg uf, - u:+ 
9;:l,z, = u:vgu:. j + 1 - __c_ ( 10 ) Reh ‘ 

Thus we obtain 

1/2. j 

au:, Re h 

Not only are the partial derivatives less complicated, but certain other terms which appear 
in the full Newton matrix disappear entirely under this scheme. The FC matrix therefore has 
fewer non-zeros than the FN matrix to store. The recapitulate, the FC matrix can be regarded 
as an FN matrix with some of the derivative terms set to zero and other terms slightly modified. 
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3.3. Notes on the resulting matrices 

Several matrix characteristics important for PCG iterative matrix solvers are evident from 
the given expanded sections of the two types of LEMs. For example, the rows of the FC matrix 
corresponding to the momentum equations have the property that the diagonal is positive and 
the off-diagonal terms corresponding to neighbouring momenta are negative. 

However, for full Newton Jacobian (FN) linear equations, for cells where IRe,I -= 10, deriva- 
tives of d (equation (10)) appear. These may cause off-diagonal momentum derivatives 
to appear which have the opposite sign to the FC momentum terms. This tends to decrease the 
diagonal dominance of the matrix and hence may cause problems for an iterative solver. 

The M-equation contains no pressure terms. Thus dMij/dpij = 0 for both FC and FN 
LEMs and hence the diagonal entries for the M-equations are zero. This can be the cause of 
problems when the matrix is factored directly as well as when it is partially factored to produce 
a preconditioner for a PCG-type matrix solver. Zeros on the diagonal will cause a non-pivoting 
matrix factorization to fail, so precautions to prevent this is the partial factorization must be 
taken. Since pivoting during factorization would require a more complicated data structure and 
greatly slow the process, it is not considered. 

For direct methods this zero-pivot problem can be avoided by realigning the equations and 
unknowns"*26 or preprocessing the matrix.27 In the case of iterative methods either of the 
previous two approaches may be used or care must be taken with the ordering of the 
 unknown^.^.^^ 

3.4. Matrix solution methods 

Iterative, PCG-type matrix solvers have been found to be effective in solving the matrices 
arising from fluid flow problems. We use CGSTAB acceleration' with right preconditioning, 
which was chosen over a number of other available methods on the basis of previous 
experiments.28 As a preconditioner we use an incomplete LU factorization, keeping the first few 
levels of fill-in (referred to as ILU (n),  where n is the highest level of fill-in k e ~ t ) . ~ . ~ '  It is possible 
to use a drop tolerance preconditioning, but tests have shown that this method is sometimes 
unreliable for high-Reynolds-number problems30 and hence it will not be considered here. 

3.5. Pre-elimination 

Although special ordering techniques can be used to ensure that an incomplete factorization 
does not produce a zero pivot,3 this method does not necessarily produce a small amount of 
fill in the incomplete (ILU) factorization. For direct methods, realignment of equations and 
unknowns has been used successfully,' e.g. dUij/dpij # 0 and dMij /dui j  # 0. Consequently, 
non-zero diagonals can be obtained by interchanging the rows of the matrix correspond- 
ing to the U -  and M-equations as described in Reference 11. Although this method is successful 
if a direct method is used for the matrix solve, our tests of this realignment (or row interchange) 
procedure produced poor results for iterative methods. 

Alternatively, pre-elimination can be carried out on the rows of the LEM corresponding to 
the mass conservation M-equation (4). Each pressure term in the staggered grid has from two 
to four adjacent velocity terms, all of which appear in the discretized M-equation. Gaussian 
elimination is performed using the U -  and V-equations corresponding to these adjacent velocity 
terms, which eliminates the neighbouring velocity terms from the M-equation. This also 
introduces non-zero terms in the diagonal entry of the M-equation. We perform no non- 
symmetric row or column recordings such as was done in Reference 11. Experiments showed 
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that selecting only one U -  or V-equation to pre-eliminate against the M-equation caused poor 
convergence of the PCG methods. The best results were obtained when all adjacent equations 
were used. Note that the resulting pressure terms in the pre-eliminated M-equation are similar 
to the SIMPLE pressure equation. Of course, this pre-eliminated equation has additional 
momentum terms as well. 

More formally, let { M }  be the set of all rows of the LEM corresponding to mass conservation 
equations. Let k be the row of the LEM which corresponds to the mass conservation equation 
at cell (i, j), M i , j ,  and let { A ) i , j  = be the elements of the LEM equation (11). Then the 
pre-elimination algorithm is as shown in Figure 2. The operation of pre-elimination is B(N) ,  
where N is the number of pressure-centred cells in the grid. It is quick to perform but does 
somewhat increase the matrix storage requirements. 

This pre-elimination step results in a preprocessed matrix (A)P and right-hand-side vector 
( - I ) ~  which are row-equivalent to the original system. No approximations are made in this 
pre-elimination step. Note that in Reference 27 some of the terms in the pre-elimination are 
lagged an iteration (placed in the right-hand-side vector) and hence the matrix in Reference 27 
is not row-equivalent to the original FC matrix. 

To avoid a profusion of superscripts, the superscript ' p' indicating pre-eliminated matrix A 
and right-hand-side vector -r  will be dropped in the following. It will be clear from the context 
whether a pre-eliminated or non-pre-eliminated matrix is being used. 

This pre-elimination method can be used for both complete and incomplete factorization. 
Note that the realignment procedure of Reference 11 will require modification in the presence 
of internal boundaries, while the pre-elimination method will always produce non- zeros on all 
diagonals regardless of the solution domain. It should also be noted that the pre-eliminated 
matrix does not in general have a symmetric structure. However, this does not pose any particular 
difficulties for our matrix solution methods. 

3.6. Ordering methods 

The ordering of the unknowns can have a large effect on the convergence rate of PCG-type 

FOR A L L  ROWS k I N  A 

ENDFOR 
(Pk)' = rk 

FOR A L L  ROWS k 4 { M }  
FOR A L L  N O N Z E R O  C O L U M N S  1 I N  ROW k, 

ENDFOR 
(&,I)'  = A k , i  

ENDFOR 

FOR A L L  ROWS k E {M} 
FOR ALL NONZERO COLUMNS 1 IN ROW k ,  A k , i  

A k  I 
- ( r t Y  := - ( r k ) p  + (pi)' 

F O R  ALL NONZERO COLUMNS Q IN ROW 1 
A k  I 

( A k , q ) P  = * k , q  - 

ENDFOR 
ENDFOR 

ENDFOR 

Figure 2. Pre-elimination algorithm 
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iterative  method^.^'.^' The minimum discarded fill (MDF) ordering method attempts to 
determine a good ordering by minimizing the size of the discarded fill terms which are ignored 
in the incomplete factorization. More specifically, at each stage of the incomplete elimination 
the next pivot element is selected (amongst the remaining uneliminated elements) which 
minimizes the discarded fill. For matrices having a large number (on average) of non-zeros per 
row, MDF can be costly to compute. The minimum updating matrix (MUM) ordering method 
is an approximation to MDF ordering which is less costly to compute. For more details 
concerning these ordering methods the reader is referred to References 3, 30 and 31. Since at 
each stage it attempts to minimize the size of discarded fill terms, MUM ordering will attempt 
to determine a pivot sequence which tends to avoid small elements on the diagonal. This is 
because a pivot row with a zero on the diagonal would have an infinite discarded fill. 

In the case of a PCG-type iterative method MUM3 was shown to be effective without 
pre-elimination. Since it uses information from the numerical entries of the matrix and not just 
the graph, MUM ordering usually produces an effective ordering. Because of this numerical 
entry sensitivity, reordering is occasionally required during the solution of the problem if the 
ordering is to remain optimal. MUM is fairly robust and in all our experiments has rarely 
produced an ordering that caused the iterative matrix solver to fail. However, since MUM 
ordering is actually an approximation to the MDF ordering described in Reference 25, some 
information is lost using MUM ordering. While MDF ordering can determine a pivot sequence 
which produces rapid convergence for anisotropic  problem^,^^*^^ MUM ordering can sometimes 
produce poor orderings for anisotropic problems. In the context of Navier-Stokes problems, 
anisotropies are generated by discretizations having large cell aspect ratios. However, in practice, 
MDF ordering is too time-consuming for Navier-Stokes-type matrices. 

It is also more costly to perform MUM ordering, both in terms of storage space for its data 
structures and the time it consumes, than the purely graph-based alternatives tested in the 
following experiments. 

Minimizing the matrix bandwidth also tends to improve the quality of ILU factorizations. 
Briefly, this is because for a given number of non-zeros in the ILU factorization, bandwidth- 
minimizing orderings tend to retain higher-level fill terms compared with other orderings.' ' To 
this end a reverse Cuthill-McKee (RCM)32 ordering was also used in conjunction with 
pre-elimination. First the matrix was pre-eliminated. For the purposes of generating an RCM 
ordering, the data structure of the pre-eliminated matrix was symmetrized, adding non-zero 
storage to the data structure as required. (Of course, these non-zeros were removed in the actual 
symbolic incomplete factorization.) RCM ordering was then performed on this new matrix graph. 
This heuristic proved effective, when combined with pre-elimination, for FC LEMs. It has the 
advantage of being quick to perform and requires very little storage for intermediate work space. 
It was expected that with pre-elimination no special treatment of the ordering (one based on 
matrix values) would be required. RCM with pre-elimination will be referred to as Pre + RCM. 

Note that in Reference 13 the zero-pivot problem was avoided by ordering the pressure 
unknowns last. While this is a robust method, tests in Reference 3 indicated that pressure-last 
orderings were poor in terms of convergence of the iterative solver. 

3.7. Preconditioning the full Newton Jacobian 

Computational experiments indicated that the frozen coefficient matrix (LEM) was relatively 
easy to solve compared with the full Newton Jacobian (FN) matrix. On the basis of the 
observation in Reference 3 that the performance of iterative methods is sometimes improved 
when preconditioning with an upstream weighted matrix or equivalently a preconditioning 
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matrix with additional artificial v i s ~ o s i t y , ~ ~ * ~ ~ * ~ ~  we have also tested the use of a frozen coefficient 
matrix (FC) as a preconditioner for a pre-eliminated full Newton (FN) matrix. With the 
M-equations pre-eliminated, the full Newton LEMs still produced unsatisfactory ILU pre- 
conditioners when ordered with pure matrix graph methods. They were prone to very small 
diagonal entries after incomplete factorization, which in turn led to numerical instability in the 
CGSTAB acceleration. The FC LEM proved to be an effective FN LEM preconditioner. 

It is important to note that the solution to the LEM remains the same regardless of the 
preconditioner chosen. More precisely, if right preconditioning is used, then the CGSTAB 
algorithm is applied to the equivalent system 

where P is the incompletely factored FC matrix. 
In the following, when pre-elimination is used with the full Newton (FN) matrix, frozen 

coefficient preconditioning will be used. To be more precise, the FC matrix is constructed and 
then pre-eliminated. This pre-eliminated FC matrix is then incompletely factored and used as 
a preconditioner. The FN matrix and right-hand side are pre-eliminated as usual and are used 
in the CGSTAB algorithm. 

4. TESTCASES 

The solution techniques were tested on over 30 two-dimensional geometries. In the interests of 
brevity, five representative problems are presented in this paper, ranging from the standard 
driven cavity problem to the more difficult backward step.4 We have found that the standard 
test problems appear to belong to two categories: those with roughly square physical dimensions 
(e.g. the driven cavity) and those having anisotropic physical dimensions (the backward step). 
All walls in these problems are set to no-slip boundary conditions (u = 0 and v = 0 at the 
boundary). 

4.1. Driven cavity ( D C )  

Reference 35 for details of this common test. 
This test is over a square region of non-dimensional width 1.0 with a lid-driven flow. See 

4.2. Two-in, one-out, symmetric flow chamber (Symm) 

This test involves a more complicated geometry and accelerating flow and is specified in 
Figure 3 (without the interior blocks A and B in the middle of the chamber). The flow speed 
reaches the maximum of 1.0 at the upper outlet. The inlets and outlet have parabolic inflow 
and outflow conditions. For reasonable Reynolds numbers it was expected that we would observe 
symmetric flow patterns. 

4.3. Two-in, one-out, asymmetrically blocked chamber (Asym) 

This geometry is fully specified in Figure 3. As with the Symm problem, the flow speed reaches 
the maximum of 1-0 at the upper outlet and the inlets and outlet have parabolic inflow and 
outflow conditions. This problem was created to demonstrate that flow symmetry and interior 
boundaries do not affect our method. As we shall see later, the patterns of flow in the chamber 
are fairly complex. 
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Figure 3. Two-in, one-out, symmetric flow chamber and asymmetrically blocked chamber. The symmetric version of 
the problem omits the interior obstructions labelled A and B 

4.4. Three-chamber problem (3Cham) 

The dimensions of this problem are given in Figure 4. The walls of the chamber are specified 
to be one grid cell thick. The maximum fluid speed is attained in the gaps between the chambers. 
The parabolic inflow and outflow conditions have been normalized so that the maximum speed 
in the chamber is 1.0. This problem involves a larger pressure differential than the others and 
also experiences accelerating flow due to the gaps in the wall being smaller than the inlet and 
outlet. 
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4.5. Backward-facing step (BFS) 

The dimensions of this problem are given in Reference 4. This problem, proposed as a standard 
test case, has parabolic inflow conditions. We also imposed parabolic outflow conditions, since 
in References 4 and 36 this was given as within 1 % of being correct. This problem is distinguished 
by physical dimensions that greatly exceed the characteristic length used to set the Reynolds 
number. The maximum flow speed was set as 1.5 at the inlet in order to adhere to the published 
set-up. 

5. COMPARING NON-LINEAR METHODS 

Given the non-linear methods outlined above, three approaches were studied. All three solved 
the steady state U-, I/- and M-equations beginning from the initial guess of a zero flow field (u = 0 
and u = 0 over the entire region). To arrive at the steady state, all these methods solve the 
time-dependent equations at t = lo6, which in effect causes the time-dependent term to disappear. 
Previous tests3 have shown that for flows at Re x 1000 this time condition produces the steady 
state flow to four-digit accuracy. The approaches used were 

(i) frozen coefficient iteration from the beginning until convergence (AIIFC) 
(ii) full Newton iteration from the beginning until convergence (AllFN) 

(iii) frozen coefficient iteration until a certain non-linear residual reduction is observed, then 

The AllFC method is robust, allowing the use of a single, very large pseudo-time step of lo6. 
No underrelaxation is required for convergence, even starting from a zero-flow initial guess, but 
convergence tends to be slow. 

Because a zero flow field generally does not appear to lie within the radius of convergence of 
Newton's method when it is applied to the elliptic form of the Navier-Stokes equations, 
pseudo-time stepping is required and underrelaxation is used to improve the efficiency of the 
solve. The method we used is fully described in Reference 3. Note that a very aggressive 
time-stepping strategy is used. Typically 1&15 pseudo-time steps are required to reach the steady 
state from an initial state of zero velocity. The final time step is typically of the order of 10" 
and results in a rapid, large reduction of the residual of the elliptic equations. Also of note is 
that this method uses an incompletely factored FN LEM as a preconditioner. 

As with the AllFC method, the FC + FN method uses a single time step of lo6. Early 
experiments showed that for small problems (where all problem dimensions, in dimensionless 
units, were 0(1), e.g. DC, Symm, Asym, 3Cham) the switch from FC to F N  could occur at a 
10- * non-linear residual reduction. Problems with a larger dimension (i.e., in dimensionless 
units, one of the problem dimensions was >>1), such as BFS, required continuing with FC 
iteration until the non-linear residual was reduced to between l ov3  and 0.7 x Note that 
this method uses the FC LEM as a preconditioner at all stages, for reasons that will be explained 
in Section 6.3. 

A minor point to note is that the internal data structure for all methods was constructed for 
the FN LEM. Thus during any FC iterations some zero-entry overhead was introduced. 
However, this also meant that the ILU factorization of the FC LEM contained more entries 
and was therefore more complete. The reason for this in the FC + FN method was to avoid 
reworking the data structure after the change to the FN method. Although these extra non-zeros 
could be easily eliminated for the AllFC method, they were left in the FC data structure to 
avoid skewing the tests by changing the number of zeros in the ILU factorization. In fact, some 

full Newton iteration (FC + FN). 
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tests showed that an ILU factorization of the FC matrix using a symbolic ILU based on the 
FN data structure was slightly superior to an ILU based solely on the FC data structure. 

It remains unclear how one can determine an appropriate point at which the FC + FN 
method should switch from the first to the second phases. This would require determining 
whether the intermediate solution is within the radius of convergence of Newton's method, which 
is not an easy task. We suggest that at the point where the method attempts to switch to 
FN, the intermediate solution be saved. Our experience suggests that if Newton's method 
is going to diverge, it will tend to diverge on both the first and second FN iterations. If this 
is the case, then the saved intermediate solution can be restored and more FC iterations 
performed. Presumably a point will eventually be reached where the Newton iteration will 
converge. 

5. I .  Convergence criteria 

The solution for a particular time step was considered converged (and thus the solution for 
the AllFC and FC + F N  methods) when a non-linear iteration made no change to the solution 
greater than in any of the variables u, u or p .  The final time step of the AllFN method was 
considered converged when an entire time step made such a small change. (Recall that a very 
aggressive time-stepping method was used, so that typically this last time step was of the size 
0(104) in dimensionless time). As pointed out below, this convergence criterion is not necessarily 
the best but is commonly used. 

This convergence criterion had some interesting side effects. The AllFC strategy finished after 
having reduced the non-linear residual by a much smaller factor than the strategies that finished 
with Newton iteration. F N  iteration reduced the non-linear residual in general by a factor of 

residual reduction. 
Convergence criteria based on an absolute reduction in non-linear residual would guarantee 
that the solution is accurate to a given degree. However, the FC method converges so slowly 
that for a number of problems (BFS in particular) the cost of a large residual reduction would 
be prohibitive. Other experiments with tighter tolerances demonstrated that more extreme 
residual reductions were easily obtained, but we decided, given the non-linear residual reduction 
typical in most publications, that the 

A mixed convergence tolerance criterion was used for the iterative linear solver. We de- 
fine Ilrtll as the linear !,-residual at the start of an iterative matrix solve (which the reader will note 
is equal to the non-linear l 2  residual at that point) and IIrf11, as the linear residual after the mth 
linear solver iteration. Either the linear residual of each LEM had to be reduced by a relative 
precision factor of or the change in the updates in the linear iteration for all variables had 
to be less than lo-'. More precisely, either 

or more. The FC methods tended to terminate with less than a 

reduction typical of our FC + FN method was ample. 

or 

max [lu;" - u;l, Iu;+' - uml 13 ' Ip;+' - p;I] < lo-*. (17) 
i. j 

The reasoning behind the tight relative residual reduction is based on an estimate of how 
much the flow will vary from grid cell to grid cell. The large-dimension problems have flow 
speeds and pressures that vary by a factor of up to 30 times less than those of the small problems 
because of their extreme length. Hence a tighter convergence tolerance was required in the linear 
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solve in the early stages. Early experiments showed that a less accurate linear solve led to 
convergence problems in the early steps of the solution. 

The absolute tolerance criterion (17) is simply a time saver which rescues the matrix solver 
from having to reduce the linear residual to tolerances far beyond those required by the 
non-linear convergence tolerances during the later non-linear iterations. 

The CGSTAB acceleration was generally allowed to continue for up to 300 iterations. We 
encountered a number of cases (typically when the switch-over from FC to FN iteration in the 
FC + FN method was done too early) where CGSTAB would ‘stall’ (i.e. many iterations with 
little or no residual reduction). If the linear residual remained in a small range ( f 3%) for 30 
iterations, we considered CGSTAB to be in this state. Restarting CGSTAB by simply calling 
the routine again, with the initial guess equal to the one attained in the stalled state, generally 
caused the acceleration to continue reducing the linear residual. Occasionally the restart had to 
be performed more than once, but it was permitted no more than four times. There is still the 
possibility, however, that the criterion (17) could case CGSTAB to return earlier with a poor 
solution if the CGSTAB acceleration is ‘stalling’2’ and the above restart condition was not 
triggered. We did not observe this problem in any of our tests. 

Few of the runs presented in this paper required this restart. The restart was generally only 
needed in geometries not presented in this paper where the solver converged to one of two or 
more possible solutions to the flow (i.e. the flow was bifurcating and not steady state) or when 
the preconditioning was inadequate owing to ordering or aspect ratio problems (see Section 
7.4). If the four restarts failed, the entire solution process was stopped, but this was only 
encountered when the non-linear Newton process was diverging. 

In practice, these criteria worked well on virtually all the problems provided that a good 
preconditioner was selected. The reader will note in the results that follow that when used with 
FN iteration, these convergence criteria produced an overall non-linear residual reduction that 
is indeed quite large. 

5.2. Test results 

Table I compares the three non-linear methods over five test problems. All CPU times given 
in this paper are for a Sun 41670, which is nominally rated at 4 Mflops. All arithmetic is Fortran 
double-precision. The five test problems were DC, Symm, Asym and 3Cham on an 80 x 80 
grid at Re = 1000 and BFS on a 400 x 20 grid at Re = 800. The value Re = 800 for BFS was 
chosen to match the tests run in Reference 4. The FC + FN method switched to FN at a 
residual reduction in all but the BFS test, where the switch-over point was 0.7 x These 
switch-over points were experimentally determined and all matrix ordering was done with MUM 
at ILU (4). 

From Table I we note that the FC + FN method was consistently superior to both the FC 
and FN methods (note that the FC and FN methods did not converge within the maximum 
CPU time limit for the BFS problem). FC + F N  also produced a considerably smaller non- linear 
/,-residual reduction than the FC method. 

Table I does not, however, show the manner in which the convergence occurred. In Figure 5 
the non-linear /,-residual reduction is plotted against the CPU time for the DC problem, which 
shows the rapid convergence of FC + FN. Figure 6 shows similar results for the BFS problem. 
Note that in both cases the line for the FC + FN method suddenly becomes steeper. This is a 
result of switching from FC to the FN method. 

The rapid and large I,-residual reduction of the FC + FN method and the general pattern of 
residual reduction of all the methods shown in Figure 5 were typical for all problems of roughly 
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Table I. Non-linear methods compared over five test problems 

r i 

Non-linear method 

All FC FC + FN All FN 

NLRed Test NLI Time NLRed NLI Time NLRed NLI Time 
~ 

DC 15 18.57 1.135 x lo-’ 8 11.40 7.865 x lo-’ 41 50.20 6.292 x lo-’ 
Symm 13 7.59 4.970 x 8 5.22 2.571 x lo-’ 30 23.55 2.302 x 
Asym 15 7.96 1.240 x lo - ’  9 5.26 2.491 x 27 18.71 2.296 x lo-’ 
3Cham 20 19.11 1.366 x lo - ’  1 1  11.75 5.882 x l o T 9  38 61.42 1.801 x lo-’ 
BFS 120 153.71 3.942 x lo-’* 68 83.86 3.342 x 40 156.27 6.667 x 

~ ~________  

‘NLI’ is the number of non-linear iterations. ‘Time’ is the CPU time in minutes. ‘NLRed’ is the non-linear residual 
reduction at convergence. * Failed to converge within the 150 min CPU time limit. The DC, Symm, Asym and 3Cham 
tests were performed over an 80 x 80 grid at Re = 1000, whereas the BFS test was done over a 400 x 20 grid at 
Re = 800. All tests were performed with the MUM ordering method. 
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Figure 5. Non-linear convergence graph for D C  problem 

square geometry. In particular, note that both FC + FN and AllFN show quadratic convergence 
as the non-linear residual becomes small. Figure 6 was also typical of the methods’ residual 
reduction patterns for problems with a longer physical domain. In this case the AllFN method 
did not converge within the CPU time limit and the region of quadratic convergence was never 
reached. However, if the time axis of Figure 6 is extended sufficiently far to the right, then the 
AllFN method does eventually show quadratic convergence behaviour similar to Figure 5. 

Note that the full Newton LEMs can take longer to solve than the FC LEMs. The question 
also arises as to what parameters are best to use when performing the linear solve. This leads 
us to our next section, which covers the linear methods. 
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Figure 6. Non-linear convergence graph for BFS problem 

Figures 7-9 display the streamline plots for the Symm, Asym and 3Cham problems respec- 
tively, solved on a 200 x 200 grid at Re = 1000 with power-law weighting. 

6. COMPARING LINEAR METHODS 

6.1. The inefectiveness of direct methods 

As noted in the introduction, direct methods are often used to solve LEM matrices. Table I1 
shows why this, even in two dimensions, is not advisable. The direct method shown (MD + Dir- 
ect) in the table uses minimum-degree ordering,37 a popular and generally accepted method. 
The iterative method uses CGSTAB, with both pre-elimination with RCM ordering and MUM 
ordering. The problem being solved is the driven cavity, Re = 1000, on a set of grids of increasing 
size. From these experiments we see that the direct method is slower. In these tests we see that 
the direct method is CO(N'.*) while the iterative methods are about S(N1'3), where N is the 
number of grid cells. (This is the complexity of the solution of the entire non-linear problem.) 
For model second-order elliptic problems the complexity of the linear solve for a PCG method 
is 0 ( N 3 / 2 ) . 3 8  Direct methods also tend to take up more storage space than iterative  method^.^.^^ 
Thus we dispense with considering direct methods further. 

6.2. Level of ILU factorization 

The matrix computations performed in our solver are done using a static data structure. In 
determining the appropriate ILU to use for the linear solve, we considered the overall 
performance over the entire non-linear solution. In Reference 3 (see also Reference 39) it was 
determined that ILU(2) or ILU(3) was best for the AllFN process. 

The current experiments showed that for the Pre + RCM method ILU(5) was the quickest 
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Figure 7. Streamfunction contours of Symm problem at Re = 1000 on a 200 x 200 grid. Levels are +O.oOOl, +0.005, 
- + 0.012, 0.024, k 0.0353773, & 0,0386, + 0.041 and + 0.044 

Figure 8. Streamfunction contours of Asym problem at Re = 1000 on a 200 x 200 grid. Levels are -0.oOO1, -0.0175, 
-0.0290, -0.03537745, 0,03537749, -0.0374, -0.0382, -0.0388, 0.0002, 0.0041, 0.01 11, 0.0270, 0.0342 and 0.0357 

(balancing the time for incomplete factorization of the preconditioner with the time for the 
iterative solve). With the MUM ordering method ILU(3) was best for all problems up to a grid 
size of 80 x 80 for square problems and 400 x 20 for rectangular problems. With larger grid 
sizes ILU(4) was required; lower levels of ILU demonstrated erratic convergence and a higher 
overall time complexity order. Thus for the main body of tests to follow, ILU(4) is used with 
MUM ordering. 
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Figure 9. Streamfunction contours of 3Cham problem at Re = lo00 on a 200 x 200 grid. Levels are -0.0100, -0.0200, 
-0.0300, -00400, -0.0500, -0.0600, -0.0700, -0.0800, -0.0900, -0.0965, -0.01100, 0.0020, 0.0100 and 00200 

Table 11. Comparison between direct and iterative matrix solvers on the driven cavity 
problem 

MD + Direct Iterative(Pre + RCM) Iterative (MUM) 

Grid Total Avg. per Total Avg per Total Avg per 
size time matrix time matrix time matrix 

20 x 20 0.57 0.05 0.55 0.05 0.4 1 0.03 
30 x 30 2.33 0.2 1 1.46 0.13 1 -08 0.10 
40 x 40 7.04 0.64 3.20 0.29 2.42 0.22 
60 x 60 32.06 2.9 1 9.47 0.86 6.6 1 0.60 

The DC problem is solved here at Re = 1000. Note that these times are in CPU minutes. In this 
series of tests the direct method is U(N"84). 

If these experiments were to be extended to three dimensions, this issue would have to be 
re-evaluated. These relatively high levels of incomplete factorization would likely lead to 
unreasonable amounts of fill-in because of the larger number of non-zeros per row in the 
three-dimensional case. 

6.3. Preconditioning the FN LEM with MUM ordering 

As already noted, attempting pre-elimination and RCM ordering on the F N  LEMs produced 
ILU factorizations with unreasonably small diagonals, which in turn led to the failure of the 
iterative matrix solver. The FC LEM proved to be a good preconditioner for Pre + RCM. 

The question remained as to what the best preconditioner for the F N  stage with MUM 
ordering was (recall that no pre-elimination step is necessary with MUM ordering). Somewhat 
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Table 111. FC and FN as preconditioners for the FN stage 
of FC + FN 

Time for FN stage 
with preconditioner type 

FC FN 

Test Total Per matrix Total Per matrix 

DC 3.69 1.23 4.37 1.46 
BFS 10.47 2.62 20.99 5.25 

Times are in CPU minutes. The DC problem was run on an 
80 x 80 grid at Re = 1ooO. The BFS problem was run on 
a 400 x 20 grid at Re = 800. In all tests MUM ordering was used 
at ILU(3). 

surprisingly, the FC LEM turned out to be a better preconditioner for the FN stage even with 
MUM ordering. Table 111 shows tests run on the 80 x 80 DC and 400 x 20 BFS problems 
that illustrate the point. Thus from this point on, all tests with MUM ordering for the FC + F N  
method use FC preconditioning at all stages. 

7. GRID AND REYNOLDS NUMBER DEPENDENCE OF FC + FN 

In order to calculate the dependence of the solution time for the FC + FN method (and its 
linear solution strategies) on the size of the grid and the Reynolds number, the following series 
of tests were performed. The Reynolds number was kept within the range 10&1000, where one 
can expect a steady state flow to exist. 

7. I .  Grid size dependence 

For the square problems (3Cham, Symm, Asym and DC) tests were run at Re = lo00 for grid 
sizes of 40 x 40, 80 x 80 and 160 x 160. For the rectangular problems tests were run at  
Re = 800 for grid sizes of 200 x 10, 400 x 20 and 600 x 32. The three grid sizes for each 
group will be referred to as coarse, medium and fine respectively. The raw results for FC + FN 
with Pre + RCM are compiled in Tables IV and V. The results for FC + FN with MUM 
ordering are compiled in Tables VII and VIII. Tables VI and IX list the time list the time 
complexity exponents for the method over the test regions. This complexity exponent was taken 
from the medium and fine grids and was measured in terms of the grid size. 

Of note is that although MUM ordering required less CPU time over the range of grid sizes 
tested, it produced in DC, Symm, Asym and 3Cham a higher time complexity exponent. 
Pre + RCM took between 40% and 60% more time for the medium grid but only between 2% 
and 23% more time for the fine grid in these square domain tests. 

A remarkable result is that for square domain problems the Pre + RCM time complexity is 
considerably below the theoretical O(N3I2) that would be expected for a second-order linear 
elliptic problem. This may be due to the fact that we are solving a non-linear problem with 
linearized equations considerably different from the model problems used for the usual analysis. 
The convergence criteria (16H17) may also have an effect. MUM ordering produced no 
surprising results for square domains, but for the BFS problem (our long-dimensioned example) 
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Table IV. Times by phase and grid size for Pre + RCM ordering tests with FC + FN method 

Grid size, with time by phase of FC + FN with Pre + RCM 

Coarse Medium Fine 

Test Total FC FN Total FC FN Total FC FN 

DC 2.67 1.85 0.82 16.00 8.85 7.16 93.69 54.86 38.83 
Symm 1.18 0.75 0.43 7.80 4.59 3.21 53.06 34.23 18.83 
Asym 1.37 0.88 0.49 8.13 5.1 1 3.02 43.06 26.24 16.83 
3Cham 3.26 2.10 1.15 19.55 12.98 6.57 118.48 85.10 33.38 
BFS 13.72 11.12 2.60 158.18 139.33 18.85 630.30 556.87 73.43 

Times are in CPU minutes. Tests DC, Symm, Asym and 3Cham were run a t  Re = 1O00, while the BFS test was ran at 
Re = 800. lLU(5) was used. . 

Table V. Iterations by phase and grid size for Pre + RCM ordering tests with FC + FN method 

Grid size, with iterations by phase of FC + FN with Pre + RCM 

Coarse Medium Fine 

FC FN FC FN FC FN 

Test NLI Avg. NLI Avg. NLI Avg. NLI Avg. NLI Avg. NLI Avg. 

DC 6 14.8 2 27.0 5 24.8 3 38.3 5 49.6 3 62-3 
Symm 5 10.0 2 21-0 5 17.8 3 24-3 5 40.0 3 37.3 
Asym 6 10.5 2 24.0 6 17.2 3 20.7 5 32.0 3 36.7 
3Cham 8 16.0 3 26.3 8 24.8 3 37.3 9 43.3 3 53.7 
BFS 36 15.9 3 61.7 64 31.5 4 80.8 71 51.0 4 133.2 

‘NLI’ denotes the number of non-linear iterations for the phase. ‘Avg.’ denotes the average number of linear iterations 
per non-linear iteration for the phase. Times are in CPU minutes. Tests DC, Symm, Asym and 3Cham were run at 
Re = IOOO, while the BFS test was run at  Re = 800. ILU(5) was used. 

Table VI. Time complexity by phase and grid size 
for Pre + RCM ordering tests with FC + FN 

method 

Time complexity exponent 

Test Overall FC phase FN phase 

DC 1.27 1.32 1.22 
Symm 1.38 1.45 1.28 
Asym 1.20 1.18 1.24 
3Cham 1.30 1.36 1.17 
BFS 1.58 I .58 1.55 

~~ 

The figures in this table are the exponent a of the order 
expression O(N”),  where N is the number of grid pressure 
cells. The measurements are taken from the medium and 
fine grids listed in Table IV. 
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Table VII. Times by phase and grid size for MUM ordering tests with FC + FN method 

Grid size, with time by phase of FC + FN with MUM 

Coarse Medium Fine 

Test Total FC FN Total FC FN Total FC FN 

DC 1.53 1.19 0.34 11.40 6.98 4.42 9 1 *99 59.99 32.00 
Symm 0.84 0.60 0.24 5.22 3.42 1.79 43.9 1 28.91 15QO 
Asym 0.82 0.60 0.22 5.26 3.65 1.60 37.27 24.04 13.23 
3Cham 1.94 1.42 0.52 11.75 8.27 3.48 106.87 82.78 24.09 
BFS 7.30 6.63 0.67 93.86 85.13 8.73 303.93 269.14 34.79 

Times are in CPU minutes. Tests DC, Symm, Asym and 3Cham were run at Re = 1O00, while the BFS test was run at 
Re = 800. ILU(4) was used. 

Table VIII. Iterations by phase and grid size for MUM ordering tests with FC + FN method 

Grid size, with iterations by phase of FC + FN with MUM 

Coarse Medium Fine 

FC FN FC FN FC FN 

Test NLI Avg. NLI Avg. NLI Avg. NLI Avg. NLI Avg. NLI Avg. 

DC 6 18.8 2 19-5 5 30.0 3 39.0 5 65.2 3 64.0 
Symm 5 14.2 2 19.5 5 17.2 3 18.3 5 39.0 3 39.0 
Asym 6 12.0 2 18.0 6 15.8 3 17-3 5 30.8 3 35.0 
3Cham 8 18.1 3 19.7 8 22.2 3 29.7 9 51.6 3 48.0 
BFS 36 14.1 3 19.0 64 28.6 4 52.5 71 36.0 4 93.8 

‘NLI’ denotes the number of non-linear iterations for the phase. ‘Avg.’ denotes the average number of linear iterations 
per non-linear iteration for the phase. Times are in CPU minutes. Tests DC, Symm, Asym and 3Cham were run at 
Re = 1O00, while the BFS test was run at Re = 800. ILU(4) was used. 

Table IX. Time complexity by phase and grid size 
for MUM ordering tests with FC + FN method 

Time complexity exponent 
~ ~~ 

Test Overall FC phase FN phase 

DC 1.51 1.55 1.43 
Symrn 1.54 1.54 1,53 
Asym 1.41 1.36 1,52 
3Cham 1.59 1.66 1.39 
BFS 1.34 1.3 1 1.58 

The figures in this table are the exponent a of the order 
expression O(N”),  where N is the number of grid pressure 
cells. The measurements are taken from the medium and 
fine grids listed in Table VII. 
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it produced a time complexity I ! ~ ( N " ~ ~ ) ,  again faster than would be expected for a model 
problem. 

The number of non-linear iterations for both the FC and FN phases remained roughly the 
same for square domain problems and only became substantially larger for the BFS test. Other 
experiments on the BFS region have determined that the boundary conditions are not to blame 
for the difficulty in obtaining a solution. When the region was shortened to length 1.0 and the 
boundary conditions kept the same (although this is highly non-physical), the solution converged 
in roughly the same time as the DC test. Our tests seemed to indicate that the extreme length 
relative to the characteristic length used to set the Reynolds number was at the root of the 
generally slower convergence. In any case, the convergence for the Pre + RCM method on the 
BFS problem was roughly the expected 8(N3'2) ,  which should reduce to  8(N4'3) in three- 
dimensional cases.38 The reader should note, however, that the matrix-value-sensitive MUM 
ordering did much better on the same test. 

7.2. Reynolds number dependence 

For the square problems tests were run at Re = 100, 500 and 1000. The rectangular problems 
were run at Re = 800 instead of 1000. The timing and iteration results are given in Tables X 
and XI for Pre + RCM and MUM orderings. We have also listed the time complexity exponents 
measured in terms of the Reynolds number for the last two tests (i.e. time = @(Reord)) for a fixed 
grid size but varying Re. 

The MUM ordering tests show a less sharp increase in time with Reynolds number than the 
Pre + RCM ordering tests. This would seem to indicate that sensitivity to the contents of the 
matrix and not just the graph figures more prominently in the solution time as the Reynolds 
number increases. 

Table XI shows that the behaviour of the BFS problem is somewhat anomalous compared 
with the other test problems. As the Reynolds number increases, the other problems show only 
a small increase in the number of frozen coefficient iterations required to obtain a solution which 
is within the radius of convergence of Newton's method. However, the BFS problem shows a 
big jump in the number of frozen coefficient iterations between Re = 500 and 800. This increase 

Table X. Solution time and iteration count for Pre + RCM ordering tests at various Reynolds numbers 

Reynolds number 

100 500 800 1000 

Test Time NLI Avg. Time NLI Avg. Time NLI Avg. Time NLI Avg. Ord 

DC 7.40 5 21.0 11.01 7 23.6 - __ - 16'00 8 29.9 0.54 
Symm 4.52 5 17.4 6.63 7 19.4 - - - 7.80 8 20.2 0.23 
Asym 3.70 5 14.0 5.53 7 16.6 - - __ 8.13 9 18.3 0.56 
3Cham 7.83 6 19.5 14.31 10 23.5 - - - 19.55 11  28.2 0.45 

- 2.92 BFS 39.89 15 39.3 40.12 15 39.3 158.18 68 34.4 -- - 

Dashes (-) indicate that the test was not run at that Reynolds number. 'Time' is the total solution time in C P U  minutes 
for FC + FN solve. 'NLI '  is the total number of non-linear iterations, F C  and FN. 'Avg.' is the average number of 
linear iterations per non-linear iteration, FC and FN. 'Ord '  is the exponent (time complexity) of the change in time for 
the last two tests with respect to the Reynolds number. All solutions are for the medium grid size (80 x 80 or 400 x 20) 
using the F C  + FN method with Pre + RCM ordering and ILU(5). 
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Table XI. Solution time and iteration count for MUM ordering tests at various Reynolds numbers 

Reynolds number 
~ ~~~ ~ ~~ ~~ ~~ 

100 500 800 1000 

Test Time NLI Avg. Time NLI Avg. Time NLI Avg. Time NLI Avg. Ord 

11.40 8 33.4 0.04 DC 10.26 5 30.6 11.08 7 30.0 - 

Symm 5.64 5 19.8 6.31 7 20.9 - _ -  5.22 8 17.6 -0.28 
_ _  

Asym 5.30 5 19.0 5.23 7 16.7 - - - 5.26 9 16.3 0.01 
3Cham 12.42 6 29.7 13.86 10 25-5 ~ _ -  11.75 1 1  24.3 -0.24 

2.39 BFS 32.45 15 36.7 30.56 15 36.7 93.86 68 30.0 - _ _  

Dashes (-) indicate that the test was not run at that Reynolds number. ‘Time’ is the total solutin time in CPU minutes 
for FC + FN solve. ‘NLI’ is the total number of non-linear iterations, FC and FN. ‘Avg.’ is the average number of 
linear iterations per non-linear iteration, FC and FN. ‘Ord’ is the exponent (time complexity) of the change in time for 
the last two tests. All solutions are for the medium grid size (80 x 80 or 400 x 20) using the FC + FN method with 
MUM ordering and ILU(5). 

in solution time is similar to that reported in Reference 40. Examination of the streamline plots 
of the solution after each non-linear frozen coefficient iteration showed an interesting behaviour. 
The primary eddy at the step corner and the secondary eddy at the upper wall form after only 
a few iterations. Smaller eddies also form and disappear. However, the two major separation 
zones near the step move very slowly (in terms of iterations) to their final position. It is this 
very slow movement to the final position which causes the large increase in frozen coefficient 
iterations between Re = 500 and 800. The frozen coefficient iteration is thus qualitatively similar 
to the behaviour of a transient approach to the steady state solution as described in Reference 
41. Consequently, for problems with long, thin domains it may be that the frozen coefficient 
iteration is inefficient for obtaining a solution which is within the radius of convergence of 
Newton’s method. Nevertheless, this approach is still extremely robust. 

7.3. Solution accuracy 

As already noted, with the FC + FN method the discrete equations were solved to a small 
non-linear residual. Although we are mainly concerned in this paper with efficient techniques 
for solution of the discretized equations and not the accuracy of any particular type of 
discretization, it is worthwhile to compare our solutions for the DC and BFS problems with 
previously published computations. 

The centre vortex of the driven cavity at Re = 1000 on a 200 x 200 grid had a maximum 
negative streamfunction value of - 0.1 154 for power-law weighting. For reference, computations 
were also made for the same problem with central and hybrid weighting (using the FC + F N  
method), where the values were -0.1183 and -0.1182. Table XI1 lists the maximum stream- 
function values and the maximum negative x-direction velocities on the vertical centreline of 
the cavity for all our tests and those found in References 16,35,40 and 4 2 4 .  Our measurements 
fell within the ranges given and closely matched when the upwinding techniques were the same. 
Taking into account the variation that typically arises with different grid sizes and discretization 
techniques, we conclude that our results are comparable with previous computations. 

The features of the BFS flow on the 600 x 32 grid closely matched those given in References 
4 and 43. The length of the recirculation region below the step was somewhat shorter in our 
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Table XII. Comparison of two features of the driven cavity a t  Re = 1000 with other studies 

Reference 

Ghia et 
Gresho et aL4= 
Vanka' 
S ~ h n ~ ~  

Thompson and Ferziger4' 

Bruneau and J ~ u r o n ~ ~  
This study 

Weighting Grid size 

* 
STU 
Hybrid 
STU 
Central 
Power-law 
Central 

t 
Central 
Hybrid 
Power-law 

257 x 257 
129 x 129 
321 x 321 
129 x 129 
129 x 129 
256 x 256 
128 x 128 
256 x 256 
200 x 200 
200 x 200 
200 x 200 

$mi" 

-0.1 179 
-0.1 14 
-0.1 173 
- 0.0799 
-0.1151 
-0.1 167 
-0.1 178 
-0.1 163 
-0.1183 
-0.1 182 
-0.1 154 

urnin on CL y-location 

-0.3829 
-0.375 
-0.387 

t: 
t: 
t: 
t: 

-0.3764 
-0.3861 
-0.3852 
-0.3726 

0.1719 
0.160 
0.1734 

t: 
t: 
t: 
t: 

0.1602 
- 0.1750 
-0.1750 
-0.1750 

* Indicates study used t/-u formulation of the incompressible Navier-Stokes equations. t See Reference 44. 3 Indicates 
values not given explicitly. 'Weighting' is the upwind differencing scheme: power-law, hybrid and central are explained 
in Reference 1; for other schemes such as streamwise upwinding (STU) refer to the cited paper. '$,in' is the minimum 
value of the streamfunction at the centre of the primary vortex of the driven cavity. 'urnin on CL' refers to the greatest 
negative x-direction velocity on the vertical centreline. 'y-location' is the vertical location of umin on CL. 

study (roughly 4.5 versus 6.10 in Reference 4), but U-direction flow speeds at  the x = 7 and 15 
points differed by less than 7% of the maximum flow speed. However, it should be noted that 
Gartling used a finer, adaptive finite element mesh and central weighting. 

The variation between our results and those in the cited studies can be accounted for by 
differences in the grid size, discretization (finite elements on a variable grid versus our use of 
the finite volume formulation) and upwind weighting techniques (or absence thereof). 

7.4. Notes on aspect ratios 

The BFS problem provides a case in point whereby we can emphasize the importance of the 
ordering of the unknowns for successful application of preconditioned conjugate gradient 
methods to Navier-Stokes problems. The BFS problem has the most extreme physical aspect 
ratio of the tests at  hand and previous studies have shown that when anisotropies arise in a 
problem (e.g. from a large difference in x- and y-direction coefficients or from large control 
volume aspect ratios), more attention needs to be paid to the matrix ~rder ing.~. '  2.24*25 

For this subsection, two new orderings are introduced. The first is 'natural' in the x-, then 
the y-direction (NatX). This orders the equations by pressure centring the cell along the x-axis 
first, grouping the unknowns u, u and p together in a small block for each cell. The second 
ordering, NatY, follows the idea of NatX, only ordering in the y-direction first. More details 
on these orderings can be found in References 3,24 and 25. NatX and NatY allow us to compare 
graph-based orderings that follow o r  run against the anisotropy of the BFS problem. The NatX 
and NatY orderings are combined with pre-elimination during the solution, since there is no 
mechanism inherent in NatX and NatY that prevents a zero pivot on the diagonal of the matrices. 

Table XI11 lists the results for the BFS run on two grids with the four different orderings. 
When the control volume aspect ratio was favourable (1.5 : l), MUM ordering produced the 
best timing results. For problems with finite volume cells with large x-dimension compared 
with the y-dimension, this creates a strong (discrete) coupling in the y-direction. The work in 
References 24 and 25 indicates that an effective ordering for this situation is produced by first 
ordering along the x-direction (which is somewhat counter-intuitive) and then in the y-direction, 
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Table XIII. The BFS problem for various aspect ratios and grids 

Grid 
size 

Ordering method 

Pre + RCM MUM Pre + NatX Pre + NatY 

* 
* 
* 

Medium Time 362.97 78.03 185.72 
100 x 80 NLI 35 35 35 
24: 1 Avg. 95.1 19.1 61.7 

Fill 1149652 2 3 5 6908 1660495 1645753 
Min. 6.6 x 4.6 x 1.4 x lo-’ 1.5 x 10-2 

Medium Time 158.18 93.86 304.1 3 257.55 
400 x 20 NLI 68 68 68 68 
1.5: 1 Avg. 34.4 30.0 54.0 49.5 

Fill 108401 2 674754 1617175 1476613 
Min. 7.5 x 7.3 x 7.4 x 1O-j  9.5 x 

* Indicates failed to converge owing to small normalized diagonal. ‘Grid size’ also gives the number 
of x- and y-direction pressure cells and the ratio of pressure-centred control volume width to 
height. ‘Time’ is the total solution time in CPU minutes. ‘NLI’ is the total number of non-linear 
iterations. ‘Avg.’ is the average number of linear (inner) iterations per non- linear iteration. ‘Fill’ 
is the total number of non-zero f i l l  terms generated during the ILU factorization; ILU(4) 
was used for the MUM ordering and ILU(5) used for the others. ‘Min.’ is the minium diagonal 
encountered in the ILU factorization; all diagonals were normalized by the maximum absolute 
value in their respective rows. All tests were on the BFS problem at Re = 800 for the given grid 
sizes. 

i.e. NatX ordering. When the control volume aspect ratio became more extreme (24 : l), NatX 
ordering, which follows the anisotropy of the problem, produced by far the best solution time. 
This confirms the findings of References 24 and 25. Note that as pointed out in Reference 24, 
MUM ordering is unable to detect anisotropies (compared with MDF ordering”). 

When the Pre + RCM ordering failed, it did so because of a small diagonal pivot produced 
in the ILU factorization. (Note that the diagonal pivots measured for Table XI11 were normalized 
using the maximum absolute value in the row of the pivot.) Indeed, when any ordering method 
completely failed to produce a solution, a small pivot had been encountered. A small pivot 
causes a rapid numerical growth in the matrix entries, leading to the failure of the iterative 
method. 

Further investigation into the challenges posed by aspect ratios in the solution of PDEs is 
under way. It suffices to say for the time being that proper matrix ordering appears to be the 
solution to the problems produced by anisotropies induced by finite volume aspect ratio 
problems. 

It is worthwhile to point out, as indicated in Table XIII, that the aspect ratio problem affects 
the linear iterative equation solution. The number of non-linear iterations is actually smaller 
for the unfavourable aspect ratio problem. 

8. CONCLUSIONS 

The FC + FN approach to the solution of the non-linear problem presented by the steady state, 
incompressible, Navier-Stokes equations is designed to take advantage of the best aspects of 
both the frozen coefficient and full Newton iteration schemes. In general, the frozen coefficient 
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linear equations matrices are easy to solve. The frozen coefficient method alone shows adequate 
initial convergence, which rapidly becomes slow. Provided that the actual solution to the discrete 
problem was not bifurcating and that the linearized FC equations were solved to sufficiently 
small tolerances, the FC method was an extremely robust method for solution of the non-linear 
equations. The full Newton method cannot in general be used from an initial zero flow field 
without pseudo-time stepping, but it can be used on the steady state equations after the frozen 
coefficient method has partially resolved the solution. The full Newton linear equation matrices 
are generally somewhat more costly to solve, but fewer solutions are required, since the method, 
once started within its radius of convergence, converges extremely rapidly. 

Consequently, it would appear that the FC + FN method is superior to the frozen coefficient 
(FC) method alone if large non-linear residual reductions are required. If only a small-linear 
residual reduction is necessary, there are some situations where the FC technique alone might 
be appropriate. The full Newton (FN) method, with pseudo-time stepping to ensure convergence, 
was always a poor third in all our tests compared with FC or FC + FN. 

We have also presented a robust approach for solving the linear equations. Of particular note 
is that the incompletely factored frozen coefficient formulation of the linear equations is a good 
preconditioner for the full Newton Jacobian. The frozen coefficient matrix is a more easily 
(incompletely) factored preconditioner and has been shown to produce more rapid convergence 
for the full Newton iteration stage of the FC + F N  method. 

MUM ordering is the best of the tested matrix orderings if the problem domain is particularly 
long in one direction relative to the characteristic length used to set the Reynolds number of 
the problem. Otherwise a graph-based ordering, coupled with the pre-elimination of the 
conservation-of-mass equation to eliminate zero pivots on the diagonal of the matrix, proved 
most effective. We have noted that ordering methods can overcome the problem of small diagonal 
pivots induced by a high control volume aspect ratio. Note that a high aspect ratio appears to 
affect the linear iteration much more than the non-linear iteration. More research on this problem 
will be presented in future papers. We emphasize once again that the question of the ordering 
of the unknowns is crucial for application of PCG methods to Navier-Stokes equations. 

We have presented five of over 30 problem geometries on which this method was tested. The 
reader will note that the FC + FN solution method coupled with a PCG solver for the linear 
equations is entirely independent of the problem geometry (with the exception of the above 
comment on the ordering of the unknowns) and that internal boundaries and fine flow details 
(the Asym problem, for example) are resolved as easily as geometries with coarser flow features 
(such as the driven cavity). 

The performance of the FC + FN non-linear and linear methods together exceeds the 
previously expected limits. Instead of the L0(N3/') generally expected in two-dimensional elliptic 
problems, our method achieved performances between B(N"zO) and L0(N1'38) for all problems 
presented (assuming that the best ordering was selected). Note that other studiesz4 have indicated 
that these methods should apply to finite element discretizations on unstructured grids with 
equal effectiveness. Since the generally expected performance of iterative methods on three- 
dimensional domains is cO(N4/3), we expect the performance of this method to improve in three 
dimensions. This method has been tested with the other upwind weighting techniques presented 
in Reference 1 and was equally as effective. 

Convergence is rapidly obtained to an arbitrary precision through the use of Newton iteration 
at the final stage and the solutions obtained have been shown to be accurate. The only 
problem-dependent parameters are the residual reduction required for switching from FC to 
FN iteration and the ordering of the unknowns for the linear solve. Any estimate for the former 
parameter can be used, since the algorithm can recover (by continuing FC iteration) if the F N  
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iteration begins to diverge. The matrix ordering question is more difficult, but a completely 
automatic method (MUM ordering) can be used which is very robust. However, it is certainly 
possible to use orderings which outperform MUM ordering in some circumstances. 

Further research is anticipated to extend the FC + F N  approach and the accompanying linear 
methods to three-dimensional flows and irregular grids. 
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AllFC 
AllFN 
Asym 
BFS 
DC 
FC 
FC + FN 
FN 
ILU(n) 
LEM 
MDF 
MUM 
NatX 
NatY 
PCG 
Pre + 
RCM 
Symm 
3Cham 

APPENDIX: NOMENCLATURE 

non-linear method using only frozen coefficient iteration 
non-linear method using only Newton iteration 
asymmetric flow chamber problem 
backward-facing step problem 
driven cavity problem 
frozen coefficient 
non-linear method using frozen coefficient, then Newton iteration 
full Newton 
incomplete lower/upper factorization keeping n levels filled 
linearized equation matrix 
minimum discarded fill (matrix ordering) 
minimum update matrix (matrix ordering) 
natural, grid-wise matrix ordering (x-direction first) 
natural, grid-wise matrix ordering (y-direction first) 
preconditioned conjugate gradients 
pre-elimination performed with the given ordering 
reverse Cuthill-McKee (matrix ordering) 
symmetric flow chamber problem 
three-chamber problem 
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